首页> 外文OA文献 >Godel's Completeness Theorem and Deligne's Theorem
【2h】

Godel's Completeness Theorem and Deligne's Theorem

机译:Godel的完备性定理和Deligne定理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

These notes were written for a presentation given at the university Paris VIIin January 2012. The goal was to explain a proof of a famous theorem by P.Deligne about coherent topoi (coherent topoi have enough points) and to showhow this theorem is equivalent to G\"odel's completeness theorem for firstorder logic. Because it was not possible to cover everything in only threehours, the focus was on Barr's and Deligne's theorems. This explains why thecorresponding sections have been given more attention. Section 1 and theAppendix were added in an attempt to make this document self-contained andunderstandable by a reader with a good knowledge of topos theory. A coherent topos is a topos which is equivalent to a Grothendieck topos thatadmits a site $(C,J)$ such that $C$ has finite limits and there exists a baseof $J$ with finite covering families. In order to prove that any coherent toposhas enough points, it is enough to show that for any coherent topos$\mathcal{E}$ there is a surjective geometric morphism from a topos with enoughpoints to $\mathcal{E}$. As sheaf topoi over topological spaces have enoughpoints, any surjective geometric morphism from some $Sh(X)$, with $X$ atopological space, to $\mathcal{E}$ is sufficient. These are provided by Barr'stheorem. This is the approach that will be taken here (following MacLane andMoerdijk, Sheaves in Geometry and Logic).
机译:这些说明是为2012年1月在巴黎第七大学的一次演讲而写的。目的是解释P.Deligne关于相干拓扑的一个著名定理的证明(相干拓扑有足够的要点),并展示该定理如何等效于G \“一阶逻辑的odel完备性定理。由于不可能仅在三个小时内覆盖所有内容,因此重点放在Barr和Deligne定理上。这解释了为什么相应的部分得到了更多的关注。第1部分和附录是试图添加的使本文档自成一体,并被对topos理论有充分了解的读者理解。相干topos是等同于Grothendieck topos的topos,它允许站点$(C,J)$使得$ C $具有有限的限制为了证明任何连贯的拓扑足够点,足以表明对于任何连贯的topos $ \ mathcal {E} $有一个形容词g从具有足够点的topos到$ \ mathcal {E} $的计量形态射影。由于在拓扑空间上的捆拓扑拓扑具有足够的点,因此,从具有$ X $拓扑空间的某些$ Sh(X)$到$ \ mathcal {E} $的任何抛射几何形态都是足够的。这些是由巴尔定理提供的。这是这里要采用的方法(紧随MacLane和Moerdijk之后,Sheaves in Geometry and Logic)。

著录项

  • 作者

    Frot, Benjamin;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号